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Abstract
Despite great recent advances in visual tracking, its further development, including both algorithm design and evaluation, is
limited due to lack of dedicated large-scale benchmarks. To address this problem, we present LaSOT, a high-quality Large-
scale Single Object Tracking benchmark. LaSOT contains a diverse selection of 85 object classes, and offers 1550 totaling
more than 3.87 million frames. Each video frame is carefully and manually annotated with a bounding box. This makes
LaSOT, to our knowledge, the largest densely annotated tracking benchmark. Our goal in releasing LaSOT is to provide a
dedicated high quality platform for both training and evaluation of trackers. The average video length of LaSOT is around
2500 frames, where each video contains various challenge factors that exist in real world video footage,such as the targets
disappearing and re-appearing. These longer video lengths allow for the assessment of long-term trackers. To take advantage
of the close connection between visual appearance and natural language, we provide language specification for each video in
LaSOT. We believe such additions will allow for future research to use linguistic features to improve tracking. Two protocols,
full-overlap and one-shot, are designated for flexible assessment of trackers. We extensively evaluate 48 baseline trackers
on LaSOT with in-depth analysis, and results reveal that there still exists significant room for improvement. The complete
benchmark, tracking results as well as analysis are available at http://vision.cs.stonybrook.edu/~lasot/.

Keywords Visual tracking · Large-scale benchmark · High-quality dense annotation · Tracking evaluation

1 Introduction

Visual object tracking plays a crucial role in computer vision
and has a wide range of applications including intelligent
vehicles, robotics, human-machine interaction, and surveil-
lance (Li et al. 2013; Smeulders et al. 2014; Yilmaz et al.
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2006). Among various types of tracking problems, a popu-
lar and fundamental one is the so-called model-free generic
object tracking, which is the focus of this paper. Briefly
speaking, given the target bounding box in the initial frame,
the goal of tracking is to locate the target in a video sequen-
tially.

In recent years, considerable progress has been made
in improving tracking performance. Visual tracking bench-
marks have been playing a key role in providing fair
comparison and evaluation of different trackers, advancing
the research frontier of visual tracking significantly. How-
ever, current benchmarks have limited further development
of tracking in the deep learning era, as well as more authen-
tic performance evaluation in real world scenarios, due to the
following reasons:

Small-scale Motivated by the success of deep learning
(Krizhevsky et al. 2012; He et al. 2016; Simonyan and Zis-
serman 2015), deep feature representation has been widely
adopted for target appearance modeling in tracking and
has achieved significant improvements. To learn a robust
deep representation, a dedicated large-scale tracking bench-
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UAV20L CDTB UAV123 OTB-13 OTB-15

TC-128 VOT-2017 NUS-PRO GOT-10k LaSOT

Fig. 1 Summary of existing benchmarks with precise dense (per frame)
annotations using log-log scale, containing OTB-13 (Wu et al. 2013),
OTB-15 (Wu et al. 2015), TC-128 (Liang et al. 2015), NUS-PRO (Li
et al. 2016), UAV123 (Mueller et al. 2016), UAV20L (Mueller et al.
2016), CDTB (Lukezic et al. 2019), VOT-2017 (Kristan et al. 2017),
GOT-10k (Huang et al. 2019) and LaSOT. The circle diameter is in pro-
portion to the number of frames of a benchmark. The proposed LaSOT
is larger than all other benchmarks with more than 3.87M frames, and
focused on long-term trackingwith average video length of around 2500
frames. Best viewed in color

mark is needed. However, most existing datasets contain
less than 400 videos (see Figure 1), which makes it hard to
learn a tracking-specific deep representation. Consequently,
researchers in the tracking community have been forced to
leverage either the pre-trainedmodels (e.g., (Krizhevsky et al.
2012), (Simonyan and Zisserman 2015) and He et al. (2016))
from ImageNet (Deng et al. 2009) for deep feature extraction
or the sequences from video object detection (e.g., Rus-
sakovsky et al. (2015) and Real et al. (2017)) for deep feature
learning, which may result in suboptimal tracking perfor-
mance owing to intrinsic differences between different tasks
(Yosinski et al. 2014). Extensive evaluation on large-scale
benchmark is needed to reliably demonstrate performance
and generality of trackers.

Lack of high-quality dense annotations Accurate and
dense (i.e., per-frame) annotations are crucial to visual object
tracking for several reasons. They ensure more accurate and
reliable evaluations and more fair comparisons for differ-
ent trackers, offer desired training samples for developing
tracking algorithms, and provide richmotion information and
temporal context in videos. It is worth noting that there have
been benchmarks proposed recently built towards large-scale
and long-term tracking, such as Müller et al. (2018) and Val-
madre et al. (2018). However, their annotations are either
semi-automatic (e.g., generated by a tracking algorithm) or
sparse (e.g., labeled every 30 frames), limiting their usability.

Short-term tracking In order to be deployed in practical
application, a tracking algorithm should be able to work well
in a long sequence where the target object may frequently
leave and enter the view. However, most current tracking
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Fig. 2 Comparison of number of classes for evaluation in densely anno-
tated benchmarks, containing UAV20L (Mueller et al. 2016), CDTB
(Lukezic et al. 2019), UAV123 (Mueller et al. 2016), OTB-13 (Wu
et al. 2013), OTB-15 (Wu et al. 2015), TC-128 (Liang et al. 2015),
VOT-2017 (Kristan et al. 2017), NUS-PRO (Li et al. 2016) and LaSOT.
We observe that the proposed LaSOT contains the most seen object cat-
egories, containing 70 different ones. Moreover, 15 extra unseen object
classes are provided for new one-shot evaluation. Note that, GOT-10k
(Huang et al. 2019) is not included for comparison because its method
to count object classes is different from existing benchmarks

datasets contain shorter length videos making them short-
term benchmarks. As shown in Fig. 1, the average video
length of these benchmarks is less then 600 frames (i.e., 20 s
for 30 fps video rate). In addition, in these short-term bench-
marks, the target objects almost always appear in the video
view. As a consequence, the evaluations on such short-term
benchmarks may not reflect the performance of an algorithm
in the real world, and thus restrict applications.

Limited number of object categories To assess the perfor-
mance of tracking algorithms in the real world, it is necessary
to utilize a diverse set of object categories for evaluation.
However, most existing benchmarks contain less than 30
object categories for evaluation (see Fig. 2). In addition,
these benchmarks do not provide any unseen object classes
in evaluation, which makes it difficult to fully evaluate the
tracking performance in real applications. We note that the
recent GOT-10k (Huang et al. 2019) tackles this problem by
introducing a large set of object classes for tracking.

Category bias A robust tracker should demonstrate sta-
ble performance in locating arbitrary targets regardless of
their categories, which requires that category bias (or class
imbalance) should be eliminated in training and/or evaluat-
ing tracking algorithms. Despite this, most current tracking
benchmarks usually consist of a few object classes (see
Table 1). The GOT-10k (Huang et al. 2019) alleviates the
problem of category bias to some extent by introducing
diverse categories. However, categories are not rigorously
balanced as the number of videos varies a lot across different
categories.

Evaluation for unseen category For certain applications
(e.g., tracking rare object classes with very few videos for
training), it is desired to evaluate the performance of a
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tracker in locating targets belonging to previously unseen
category. Current large-scale benchmark (e.g.(Müller et al.
2018)) often have category overlaps between training and
testing sequences, which makes it hard to meet this eval-
uation requirement. In order to alleviate this problem, the
recently proposed GOT-10k (Huang et al. 2019) that takes
the first attempt to introduce one-shot evaluation for track-
ing, aiming to assess tracking performance for unseen object
classes.

In the literature, many benchmarks have been introduced
to handle the aforementioned problems: e.g., (Wu et al. 2013;
Liang et al. 2015; Kristan et al. 2016; Wu et al. 2015; Kris-
tan et al. 2018; Li et al. 2016) for precise dense annotations,
(Mueller et al. 2016; Valmadre et al. 2018) for long-term
tracking, (Huang et al. 2019) for diverse object categories and
unseen classes, and (Müller et al. 2018; Huang et al. 2019)
for large-scale tracking. However, none of them address all
of the issues, which motivates our proposed benchmark.

1.1 Contribution

In this work, we provide a novel benchmark for Large-
scale Single Object Tracking (LaSOT). The contributions
of LaSOT are summarized as follows:

(1) We present a large-scale benchmark, LaSOT, for visual
tracking. LaSOT covers 85 object categories and consists
of 1550 videos totaling more than 3.87M frames. Each
frame is carefully inspected and manually labeled with
a bounding box. To ensure quality, each annotation box
is visually double-checked and corrected when needed.
To our knowledge, LaSOT is by far the largest (in terms
of the number of frames) tracking benchmark with pre-
cise dense annotations. By releasing LaSOT, we expect
to offer the community a dedicated platform for unified
training and evaluation of tracking algorithms.

(2) LaSOT allows evaluation of long-term tracking. In par-
ticular, the shortest sequence consists of 1000 frames and
the longest 11,397 frames, and the average video length
of LaSOT is around 2500 frames (equating to around 83s,
see Table 1), enabling assessment of long-term trackers.

(3) Different from current benchmarks which only provide
bounding boxes, LaSOT offers both visual bounding box
annotations andnatural language specification,which has
been shown to be beneficial for various vision tasks [e.g.,
(Hu et al. 2016; Li et al. 2017)] including tracking (Li
et al. 2017; Feng et al. 2020). By providing additional
language annotations, we aim at stimulating the use of
lingual features to further improve tracking.

(4) For flexible evaluation of trackers in different settings,
we adopt two protocols, i.e., full overlap and one-shot.
For full overlap protocol, training and testing sets have the

same object classes. For one-shot protocol, as introduced
in (Huang et al. 2019), the categories of training and test-
ing sets instead have zero overlap. These two protocols
enable researchers/engineers to more flexibly evaluate
their trackers to differing requirements, e.g., locating tar-
gets belonging to seen/unseen categories.

(5) LaSOT inhibits category bias by collecting equal num-
bers of videos for each object class1. By doing this, the
evaluation and comparison of trackers becomesmore fair.
To our knowledge, LaSOT is the first benchmark rigor-
ously balanced for equal category size.

(6) To evaluate existing trackers and enable future compari-
son on LaSOT, we benchmark 48 representative tracking
algorithms under the two protocols, and conduct exten-
sive and in-depth analysis on performance using different
metrics.

This paper extends an early conference version in (Fan
et al. 2019). The main new contributions are follows. (1)
We introduce 15 extra new object classes with 150 manually
annotated sequences andmore than 350K frames. In particu-
lar, different from classes chosen based on ImageNet in (Fan
et al. 2019), the 15 new classes are intentionally and carefully
selected outside of ImageNet. By doing so, our benchmark
enables a new one-shot evaluation protocol using these 15
classes for testing. (2) More details of benchmark construc-
tion are provided. (3)We employ two different protocols, full
overlap and one-shot, for flexible performance evaluation for
seen/unseen target categories. (4)More thorough experimen-
tal analysis are conducted in various aspects.

The rest of this paper is organized as follows. Section 2 dis-
cusses related tracking algorithms and datasets of this work.
In Sect. 3, we detail the construction of LaSOT and analyze
it through a variety of informative statistics. Experimental
evaluation with in-depth analysis are conducted in Sect. 4,
followed by conclusion in Sect. 5.

2 RelatedWork

2.1 Visual Tracking Algorithm

Visual tracking has been extensively studied in the past few
decades. Here we briefly review two recent trends including
correlation-filter trackers and deep trackers, and refer readers
to surveys (Li et al. 2013; Smeulders et al. 2014; Yilmaz et al.
2006; Li et al. 2018) for more algorithms.

1 Note that for tracking benchmark using full overlap split protocol,
category bias should be inhibited in both training and evaluation of
trackers. For tracking benchmark using one-shot split protocol, category
bias should be inhibited in only training of trackers.
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Correlation-filter approaches formulate tracking task as a
regression problem by learning a discriminative filter. Owing
to the extremely efficient solution using fast Fourier trans-
form (FFT), correlation-filter trackers (Bolme et al. 2010;
Henriques et al. 2015) run at speeds of several hundred frames
per second and draw extensive attention with many improve-
ments. The methods of Li and Zhu (2014); Danelljan et al.
(2014) introduce a scale embedding to handle scale vari-
ation. The approaches in Danelljan et al. (2015); Li et al.
(2018) improve correlation-filter tracking using extra regu-
larization techniques. Background information is explored
in Mueller et al. (2017); Galoogahi et al. (2017) to enhance
robustness of the filters. The methods of Ma et al. (2015);
Danelljan et al. (2016, 2017) replace hand-crafted features
with deep features to improve performance. The approach
in Liu et al. (2015) utilizes part-based representation to
deal with challenges that are difficult for correlation filter
tracking.

Inspired by the success of deep learning, many deep track-
ers (Wang and Yeung 2013; Wang et al. 2015; Nam and
Han 2016; Fan and Ling 201; Song et al. 2018) have been
proposed and exhibit state-of-the-art performance. Despite
impressive results, these approaches suffer from heavy com-
putational burden due to deep feature extraction or online
network fine-tuning. To alleviate this problem, deep Siamese
networks havebeen introduced for object tracking (Bertinetto
et al. 2016b; Tao et al. 2016). Owing to balanced efficiency
and accuracy, deep Siamese tracking has been extended by
many later works (He et al. 2018; Li et al. 2018; Fan and Ling
2019; Wang et al. 2019, ?; Zhu et al. 2018; Li et al. 2019).
To deal with scale variation, the methods of Danelljan et al.
(2019) introduce the intersection-over-union (IoU) network
for tracking and achieve promising results.

2.2 Visual Tracking Benchmark

Benchmarks have been crucial for advancing the research in
visual tracking. For a systematic review, we classify existing
benchmarks into two types: dense benchmarks which use
per-frame manual annotation and other benchmarks which
use sparse and/or (semi-)automatic annotation.

2.2.1 Dense Benchmarks

Dense benchmarks offer per-frame bounding box anno-
tations for each video. In order to ensure high quality,
each frame is manually annotated with careful inspection
and verification. For tracking, these precise bounding box
annotations are highly desired for both training and evalu-
ating tracking algorithms. Currently, popular dense tracking
benchmarks include OTB (Wu et al. 2013, 2015), TC-128
(Liang et al. 2015), VOT (Kristan et al. 2016), NUS-PRO (Li

et al. 2016), UAV (Mueller et al. 2016), NfS (Galoogahi et al.
2017), CDTB (Lukezic et al. 2019) and GOT-10k (Huang
et al. 2019).

OTB OTB-13 (Wu et al. 2013) contains 51 videos with man-
ual annotation for tracking evaluation. The videos are labeled
with 11 attributes for further analysis of tracking perfor-
mance. OTB-13 was later extended to the larger OTB-15
(Wu et al. 2015) by introducing extra 50 sequences.

TC-128 TC-128 (Liang et al. 2015) comprises of 128 videos
that are specifically designated to evaluate color-enhanced
trackers. The videos are labeled with 11 similar attributes as
in OTB (Wu et al. 2013).

VOTVOT (Kristan et al. 2016) introduces a series of tracking
competitionswith up to 60 sequences in each of them, aiming
to evaluate the performance of a tracker in a relative short
duration. Each frame in the VOT datasets is annotated with
a rotated bounding box with several attributes.

CDTB CDTB (Lukezic et al. 2019) offers 80 RGB-D videos
with manual annotations for tracking. Each sequence is
labeled with 13 attributes. The goal of CDTB is to encourage
the exploration of depth information for improving tracking
performance.

NUS-PRONUS-PRO(Li et al. 2016) contains 365 sequences
with a focus on human and rigid object tracking. Each
sequence in NUS-PRO is annotated with both target loca-
tion and occlusion level for evaluation.

UAVUAV123 and UAV20L (Mueller et al. 2016) are utilized
for unmanned aerial vehicle (UAV) tracking, comprising 123
short and 20 long sequences, respectively. Both UAV123 and
UAV20L are labeled with 12 attributes.

NfSNfS (Galoogahi et al. 2017) provides 100 sequenceswith
a high frame rate of 240 fps, aiming to analyze the effects of
appearance variations on tracking performance.

GOT-10k GOT-10k (Huang et al. 2019) consists of 9695
videos, aiming to provide rich motion trajectories for devel-
oping and evaluating trackers. In addition, GOT-10k is the
first to propose a novel one-shot evaluation for assessing
tracking performance.

Our LaSOT belongs to the category of dense tracking
benchmark. In comparison with others, LaSOT is the largest
with more than 3.87million frames and an average video
length of around 2500 frames. Moreover, LaSOT is the
only one to offer additional language specification for each
sequence. LaSOT is closely related to but different from the
recently proposed large-scale GOT-10k (Huang et al. 2019).
Despite sharing the similar idea of performing one-shot eval-
uation, LaSOT presents two protocols. In addition, instead
of focusing on short-term tracking GOT-10k, our goal is to
assess trackers in long-term scenarios. Table 1 provides a
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detailed comparison of LaSOT with existing dense bench-
marks. It is worth noting that most existing dense tracking
benchmarks, including LaSOT, utilize axis-aligned bound-
ing boxes to annotate targets. The reasons are two-fold.
First, the problem setting of current single object track-
ing is to locate the target with a manually given up-right
bounding box. In accordance with this goal, axis-aligned
boxes are usually adopted to annotate targets in many bench-
marks. Axis-aligned boxes are also widely employed in
object detection benchmarks such as PASCAL VOC (Ever-
ingham et al. 2010) and COCO (Lin et al. 2014). Second,
axis-aligned boxes are able to provide sufficient informa-
tion about the target for stable tracker initialization and
reliable performance evaluation, as evidenced by recent pro-
gresses of tracking algorithms on various benchmarks. From
this perspective, axis-aligned boxes are effective for track-
ing. Moreover, this type of annotation requires less labeling
efforts.

2.2.2 Other Tracking Benchmarks

Aside from benchmarks described above, there are other
benchmarks using different annotation strategies. These
tracking benchmarks are either labeled sparsely (e.g., every
30 frames) or annotated (semi)-automatically using tracking
algorithms. Examples of these types of benchmarks include
ALOV (Smeulders et al. 2014), TrackingNet (Müller et al.
2018) and OxUvA (Valmadre et al. 2018).

ALOV (Smeulders et al. 2014) comprises of 314 video
sequences which are labeled in 14 attributes. Instead of
per-frame annotation, ALOV provides annotations every 5
frames. TrackingNet (Müller et al. 2018) is a large-scale
benchmark with 30K sequences. All videos come from the
video object detection dataset YT-BB (Real et al. 2017), and
each one is labeled by a tracking algorithm. Although this
tracker annotator is shown to be reliable in a relatively short
period (i.e., 1 s), it is hard to guarantee the same tracking
performance on a different benchmark, especially when the
sequences become more challenging. In addition, the aver-
age video length of TrackingNet is less than 500 frames,
which may not be able to reflect the long-term performance
of a tracking algorithm. OxUvA (Valmadre et al. 2018) con-
sists of 366 sequences. Similar to TrackingNet, the videos
are sampled from YT-BB (Real et al. 2017). With the aver-
age sequence length more than 4200 frames, OxUvAmainly
aims to focus on long-term tracking. Each video in OxUvA
is labeled every 30 frames.

These benchmarks usually provide a large number of
sequences and servewell for evaluation purposes.While they
benefit from a reduction of annotation cost, they do not pro-
vide detailed per frame performance evaluation of tracking
algorithms. Furthermore, it may cause problems for some

trackers that require temporal context or motion cues from
annotations, because these informationmaybe eithermissing
due to sparse annotation or imprecise due to potentially unre-
liable annotation. Different from these benchmarks, LaSOT
provides a large set of sequences with high-quality dense
bounding box annotations, which makes it more suitable for
developing deep trackers as well as for evaluating long-term
tracking algorithms.

2.3 Other Vision Benchmarks

Given the similarities shared between visual object track-
ing and video object detection (e.g., visual tracking can
be treated as video single-object detection), video object
detection benchmarks VID (Russakovsky et al. 2015) and
YT-BB (Real et al. 2017) are often adopted for training deep
trackers.

VID (Russakovsky et al. 2015) consists of 5.4K sequences
with more than two million frames and YT-BB (Real et al.
2017) contains 380K videos with more than five million
frames. Despite being large in scale, these two benchmarks
are not ideally suitable for tracking tasks due to several rea-
sons. First, in many videos, the targets are almost static
throughout the entire video, making them not desirable for
motion tracking. Second, the targets are partially out of view
in the initial frame in a lot of videos, which is different
from the tracking task. Third, the benchmarks are sparsely
annotated, and thus may be inappropriate if directly used for
tracking as discussed early.

In the era of deep learning, benchmarks have played a
more important role in advancing various vision tasks. To
some extent, LaSOT is inspired by the successes of other
vision benchmarks. To this end, we will briefly discuss sev-
eral large-scale benchmarks in other tasks including image
classification, object detection, segmentation and multi-
object tracking.

In image classification, ImageNet (Deng et al. 2009)
is arguably the most popular dataset consisting of more
than 10M images. Owing to the large-scale ImageNet, deep
networks have proven their power in learning visual represen-
tation. In object detection, the well-known PASCAL VOC
detection (Everingham et al. 2010) contains around 10K
images. The larger scale COCO (Lin et al. 2014) contains
more than 200K images for detection. In image segmenta-
tion, PASCAL VOC segmentation (Everingham et al. 2010)
provides around 10K images. ADE20K (Zhou et al. 2017)
is a collection of more than 20K images for scene parsing.
Citiscapes (Cordts et al. 2016) consists of 25K images for
traffic scene segmentation. LVIS (Gupta et al. 2019) offers
164K image for large-scale vocabulary instance segmenta-
tion. In multi-object tracking, the MOT challenge (Milan
et al. 2016) provides 21 videos. Recently, a larger scale TAO
(Dave et al. 2020) has been compiled containing 2907 videos.
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3 The LaSOT Benchmark

3.1 Design Principle

Our goal is to construct a dedicated benchmark, LaSOT,
for training and evaluating tracking algorithms. To this end,
we follow six principles in constructing LaSOT, including
large-scale, high-quality dense annotations, long-term track-
ing, category balance, comprehensive labeling and flexible
protocols, aimed at handling the issues of existing tracking
benchmarks described in previous sections.

3.2 Data Collection

In total, LaSOT consists of 85 object classes, which are
divided into two parts. The first part, referred to as part-1
for short, contains 1400 sequences from 70 object cate-
gories. Most of categories are chosen from the 1000 classes
from ImageNet (Deng et al. 2009), with a few exceptions
(e.g., drone) that are carefully selected for popular tracking
applications. The other part, referred to as part-2 for short,
comprises 150 sequences from 15 object classes. It is worth
noting that, for the goal of one-shot evaluation on object from
unseen categories, these 15 classes are carefully chosen from
outside object categories in ImageNet (Deng et al. 2009) and
intentionally to be far away from the 70 categories in part-1.
There is no overlap between the 15 categories in part-2 and
70 classes in part-1. Different from current dense tracking
benchmarks that contain less than 30 categories and typically
are unevenly distributed, LaSOT provides equal number of
videos for each category in both part-1 and part-2 to avoid
the category bias problem.

After determining the 85 object classes in LaSOT, we
searched for sequences of each category from YouTube
(https://www.youtube.com/). The reasons for choosingYouTube
are two-fold: (1) YouTube is the largest video platform in the
world, which allows us to select diverse videos for construct-
ing the benchmark and avoids bias to certain scenes, and (2)
many videos on YouTube are captured in the wild, which
may be helpful for developing and evaluating trackers for
real applications.

Initially, over 6000 video sequences are collected. With a
joint consideration of the video quality (e.g., videos with shot
cut are not suitable for tracking) and our design principles,
1550 sequences survived. Nevertheless, these 1550 videos
are not immediately available for the tracking task due to
containing a large mount of irrelevant contents. For instance,
for a video of person category (e.g., a sporter), it often con-
sists of some undesirable introduction content of each sporter
in the beginning. Therefore, we carefully inspect each video
sequence, filter out the tracking-unrelated contents and exclu-
sively retain one usable clip for our tracking task. For part-1,
each category consists of 20 videos, while for part-2, each

contains 10 sequences. Figure 3 shows the object categories
on LaSOTwith comparison to several existing popular dense
tracking benchmarks with available category information. It
is worth noting that, although the numbers of videos for cat-
egories in part-1 and part-2 are not equal, LaSOT is still
balanced due to their different roles as described in Sect. 3.5.
Also note that, in Fig. 3 we do not include the large-scale
GOT-10k for comparison because the category granularity
used inGOT-10k is different from those in other benchmarks.
For example, “big truck ”, “half truck” and “pickup truck”
are treated as three different categories in GOT-10k. By con-
trast, in other benchmarks, there may exist only one “truck”
category.

Eventually, we compiled a large-scale tracking bench-
mark by gathering 1550 videos with 3.87million frames
from YouTube under Creative Commons license. The aver-
age video length of LaSOT is 2502 frames (i.e., 83 s for
30 fps). The shortest sequence contains 1000 frames (i.e.,
33 s), while the longest one consists of 11,397 frames (i.e.,
378 s).

3.3 Annotation

3.3.1 Annotation Protocol

Annotation consistency cross different sequences and label-
ers is crucial for the quality of a tracking benchmark. We
define a deterministic protocol for ensuring such quality. In
a video sequence with a specific tracking target (determined
before starting annotation), for each frame, if the target is
present in the view, a labeler manually draws/edits an up-
right (axis-aligned) bounding box to tightly fit any visible
part of the target (see left images of (a) and (b) in Fig. 4);
otherwise, an absence label, either full occlusion (see right
image of (a) in Fig. 4) or out-of-view (see right image of
(b) in Fig. 4), is assigned to this frame. By doing so, there
are two advantages: (1) with absence labels, performance
evaluation is more accurate by avoiding those frames with-
out target present, and (2) researchers can develop occlusion
or out-of-view aware tracking algorithms using this informa-
tion. Note that, our strategy cannot guarantee tominimize the
background area in the box, as similarly observed in other
benchmarks. Nevertheless, this strategy provides consistent
annotations that are relatively stable for learning the dynam-
ics.

The above annotation strategy works well most of the
time, however, exceptions exist. For certain categories, e.g.,
mouse, the target object may contain long, thin, and/or highly
deformable parts, e.g., a tail, which not only introduces much
background information into object, but also provides lit-
tle help for target recognition and localization. We carefully
identify such targets and associated videos in LaSOT, and
design specific rules for their annotations. In detail, before
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(g) LaSOT (1,550 videos)

(d) NUS-PRO (365 videos) (e) NfS (100 videos) (f) TC-128 (128 videos)

(a) UAV123 (123 videos) (b) OTB-15 (100 videos) (c) VOT-2017 (60 videos)

part-1 category (70 classes)

part-2 category (15 classes)

Fig. 3 Category distribution of tracking benchmarks. The category distribution of LaSOT is more balanced than those of other benchmarks. Best
viewed in color

(a) Sequence bus-19

(b) Sequence horse-1

(c) Sequence mouse-6

Fig. 4 Illustration of annotation strategy for different cases. a: target
with full occlusion. b: target with out-of-view. c: target with thin, long,
and highly deformable part. Best viewed in color

starting to annotate, we inspect each object category and
identify twelve such categories and their undesired parts,
including bird (the leg part), cat (the tail part), elephant (the
tail part), fox (the tail part), gecko (the tail part), guitar (the
handlebar part), leopard (the tail part), lion (the tail part),
monkey (the tail part), tiger (the tail part), shark (the tail part)
and mouse (the tail part). For objects from these categories,
we exclude the undesired part when drawing their bounding
boxes. Note that, to ensure the usability of these classes, the
inspection of each object category and identification of unde-
sired parts are conducted by a group of experts (three PhD
students working in related areas). An annotation example is
shown in the image (c) of Fig. 4 and more can be found in
our benchmark.

In order to enrich annotation, we provide additional lan-
guage descriptions for each sequence. The natural language
specification is represented by a sentence that describes the
color, behavior and surroundings of the target. LaSOT con-
sists of 1550 such sentences for all sequences. Notice that, we
expect that these lingual descriptions can provide auxiliary
help for improving tracking. For example, one can leverage
deep neural networks to extract lingual features and use them
as a global semantic guidance to suppress background dis-
tractors in the search region. This way, the tracker may better
focus on locating the target.
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initial annotation fine-tuned annotation

Fig. 5 Examples of fine-tuning initial annotations. We observe that,
after fine-tuning, the final annotations in red rectangles better fit to the
target region than the initial annotations in green rectangle. Best viewed
in color

3.3.2 Quality Assessment Protocol

For developing a high-quality dense benchmark, the most
effort demanding parts include manual labeling, double-
checking and error correcting. For this task, we have assem-
bled an annotation team composed of several Ph.D. students
working on related areas and many volunteers. To ensure
high-quality annotation, each video is processed by two
teams: a labeling team and a validation team. Each labeling
team is composed of a volunteer and an expert (PhD student).
The volunteer manually draws/edits the target bounding box
in each frame, and the expert inspects the results and adjusts
them if necessary. Then, the annotation results are reviewed
by the validation team composed of several (typically three)
experts. If an annotation result is not unanimously agreed by
all members in the validation team, it will be sent back to the
original labeling team to revise. Note that, when sending the
annotation results back for revision, detailed comments from
thevalidation teamare attached.Examples include “the anno-
tated bounding box is too small to cover the whole target,”
“the box is too large and introduce too much background,”
“the left side contains much background and its edge needs
to move closer the target boundary,” etc. This way, we ensure
that the revised annotation result is acceptable as expected.

To improve the annotation quality as much as possible,
we check all the annotation results carefully and revise them
frequently. Around 40% of the initial annotations fail in the
first round of validation, and many frames are revised at
least three times. Some challenging frames that are initially
labeled incorrectly or inaccurately are given inFig. 5.With all
these efforts, we finally reach a benchmark with high-quality
dense annotation, with some examples shown in Fig. 6.

3.4 Attributes

In order to further analyze the tracking performance, each
sequence in LaSOT is labeled with a list of 14 attributes,
including camera motion (CM), rotation (ROT), deformation
(DEF), full occlusion (FOC), partial occlusion (POC), illu-
mination variation (IV), out-of-view (OV), viewpoint change
(VC), scale variation (SV), background clutter (BC), motion

blur (MB), aspect ratio change (ARC), low resolution (LR)
and fast motion (FM). Table 2 lists the definition of each
attribute, and Fig. 7a shows the distribution of sequences
in each attribute. From Fig. 7a, it can be seen that the most
common challenge factors in LaSOT are target scale changes
(SV and ARC), occlusion (POC and FOC), deformation and
rotation, which frequently occur in real applications.

In addition, Fig. 7a shows that each attribute consists of
at least 200 videos, which clearly supports the statistical
significance of our attribute evaluation. Figure 7b demon-
strates the distribution of attributes of LaSOT compared with
popular benchmarks OTB-15 (Wu et al. 2015) and TC-128
(Liang et al. 2015) on overlapping attributes. From Fig. 7b,
weobserve thatmore than1400videos inLaSOTare involved
with scale variations. ComparedwithOTB-2015 and TC-128
with less than 70 videos with scale changes, LaSOT is more
challenging and thus better reflects the generalizability of
trackers in dealing with scale changes. On the out-of-view
attribute, LaSOT contains 509 videos, while OTB-15 and
TC-128 have less than 20 sequences, indicating that LaSOT
reflects better the challenges for tracking in the wild. More-
over, LaSOTfocuses on small object trackingwith 765videos
in the attribute of low resolution, much more than that in
OTB-15 and TC-128.

It is worth noting that in our benchmark, as well as in most
other popular ones, a video sequence may consist of more
than one attribute. As a consequence, it may be difficult to
concretely identify the attribute causing failure, especially
if the number of videos on this attribute for evaluation is
small. The ideal situation for attribute evaluation would be
that each sequence exhibits one and only one attribute.Never-
theless, in real world applications, it is almost impossible for
a video to contain only one challenge. To alleviate this prob-
lem and reduce uncertainty, in existing tracking benchmarks,
a common way is to collect all videos containing a specific
attribute when performing evaluation for that attribute. For
example, one can usually gather more than thirty videos for
some attributes. Especially, in our large-scale benchmark,
the numbers of videos for most attributes exceed one hun-
dred. Consequently, wemay obtain a statistically meaningful
conclusion for attribute evaluation despite that videos may
contain mixed attributes. This is supported by the fact that
many trackers with higher attribute evaluation scores gen-
erally work better in dealing with corresponding attributes
in videos on various benchmarks. For this reason, following
the studies in previous tracking benchmarks, attribute-based
evaluation is conducted on LaSOT as well. With that said,
it is worth noting a recent effort to restrict one attribute per
(short) sequence in tracking evaluation (Fan et al. 2020).
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bear-12: “white bear walking on grass around the river bank”

bicycle-7: “bicycle by a man on the road with other bicycles”

bus-2: “blue bus running on the street”

lantern-2: “yellow lantern flying in the sky with other lanterns”

person-14: “boy in black suit dancing in front of people”

basketball-20: “basketball on a man’s hand”

Fig. 6 Example sequences and annotations in LaSOT. Best viewed in color

Table 2 Descriptions of 14 different attributes in LaSOT

Attribute Definition

CM Camera Motion: abrupt motion of the camera

VC View Change: viewpoint affects target appearance significantly

ROT Rotation: the target object rotates in the image

SV Scale Variation: the ratio of target bounding box is outside the range [0.5, 2]

DEF Deformation: the target object is deformable during tracking

BC Background Clutter: the background near the target object has the similar appearance as the target

POC Partial Occlusion: the target object is partially occluded in the sequence

FOC Full Occlusion: the target object is fully occluded in the sequence

MB Motion Blur: the target region is blurred due to the motion of target object or camera

IV Illumination Variation: the illumination in the target region changes

ARC Aspect Ratio Change: the ratio of bounding box aspect ratio is outside the rage [0.5, 2]

OV Out-of-View: the target object completely leaves the video frame

LR Low Resolution: the area of target box is smaller than 1000 pixels in at least one frame

FM Fast Motion: the motion of target object is larger than the size of its bounding box
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(a) Distribution of sequences in each attribute on LaSOT (b) Comparison of distribution in common attributes on different benchmarks

Fig. 7 Distribution of sequences in each attribute in LaSOT and comparison with other benchmarks. Best viewed in color

Table 3 Comparisons between training/testing sets of LaSOT under full overlap protocol

Video Min frames Mean frames Max frames Total frames

LaSOTtra 1120 1000 2529 11,397 2.83M

LaSOTtst 280 1000 2448 9999 690K

Table 4 Comparisons between training/testing sets of LaSOT under one-shot protocol

Video Min frames Mean frames Max frames Total frames

LaSOTtra 1400 1000 2506 11,397 3.52M

LaSOTtst 150 2005 2393 2500 350K

3.5 Evaluation Protocols

Currently, evaluation of large-scale benchmarks is based on
either full overlap (e.g., Müller et al. (2018)) or one-shot
(e.g., Huang et al. (2019)). We argue that both protocols
have their own applications. The full overlap protocol splits
training/testing sets with fully overlapped object classes, and
it can be used to develop tracking algorithms in the scene
where the target category appears in the tracker’s training set.
By contrast, one-shot protocol splits training/testing with no
overlap between their object categories, and it can be utilized
in applications where the target category is rare. In order to
accommodate more application scenarios, we introduce both
protocols into LaSOT.

Full Overlap Protocol In the full overlap protocol, 1400
sequences of 70 categories in part-1 are used for training and
testing. Specifically, following the 80/20 principle (i.e., the
Pareto principle), we select 16 out of 20 sequences in each
category for training, and the rest for testing. This way in
the full overlap protocol, the training and testing sets consist
of 1120 and 280 videos respectively. Since the number of
videos in each category for both training and testing are equal,
LaSOT is category-balanced. Table 3 compares statistics of
training/testing sets in full overlap protocol.

One-shot Protocol In the one-shot protocol, all 1550 videos
from the 85 classes are utilized for training and testing.
Because training and testing sets are required to have no over-

lap in category, we employ 1400 sequences of 70 categories
in part-1 for training, and the other 150 videos of 15 classes
in part-2 are used for evaluation. In particular, to increase
the source difference, the 15 objects categories are specially
chosen outside of the 1000 classes from ImageNet. It is worth
noting that LaSOT is still category-balanced because in both
sets, each category contains the same number of videos.
Table 4 compares statistics of training/testing sets in one-
shot protocol.

4 Evaluation

4.1 EvaluationMetric

Following Wu et al. (2015), we perform One-Pass Evalua-
tion (OPE) andmeasure the performance of different trackers
using three metrics, i.e., precision, normalized precision
and success, under two protocols.

The precision (PRE) is calculated by comparing distance
between centers of the groundtruth bounding box and the
tracking result in pixels. Different algorithms are ranked
according to the value of this metric on a certain threshold
(e.g., typically 20 pixels). Since PRE does not take object
scale into consideration, it is sensitive to target size and image
resolution. To avoid this problem, we adopt an additional
strategy as in Müller et al. (2018) to normalize the PRE with
scales. Please refer to Müller et al. (2018) for more details.
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Table 5 Summary of evaluated trackers. Representation: Sparse —
Sparse Representation, Color — Color Names or Histograms, Pixel —
Pixel Intensity, HoG — Histogram of Oriented Gradients, H or B —

Haar or Binary, Deep—Deep Features, Update—Onlinemodel update
(or fine-tuning)

Representation Search

PCA Sparse Color Pixel HoG H or B Deep Update PF RS DS

IVT (Ross et al. 2008) IJCV08 � � �
MIL (Babenko et al. 2009) CVPR09 H � �
Struck (Hare et al. 2011) ICCV11 H � �
L1APG (Bao et al. 2012) CVPR12 � � �
ASLA (Jia et al. 2012) CVPR12 � � �
CSK (Henriques et al. 2012) ECCV12 � � �
CT (Zhang et al. 2012) ECCV12 H � �
TLD (Kalal et al. 2012) PAMI12 B � �
CN (Danelljan et al. 2014) CVPR14 � � � �
DSST (Danelljan et al. 2014) BMVC14 � � � �
MEEM (Zhang et al. 2014) ECCV14 � � �
STC (Zhang et al. 2014) ECCV14 � � �
SAMF (Li and Zhu 2014) ECCVW14 � � � � �
LCT (Ma et al. 2015) CVPR15 � � � �
SRDCF (Danelljan et al. 2015) ICCV15 � � �
HCFT (Ma et al. 2015) ICCV15 VGG-19 � �
KCF (Henriques et al. 2015) PAMI15 � � �
Staple (Bertinetto et al. 2016a) CVPR16 � � � �
SINT (Tao et al. 2016) CVPR16 VGG-16 �
SCT4 (Choi et al. 2016) CVPR16 � � �
MDNet (Nam and Han 2016) CVPR16 VGG-M � �
SiamFC (Bertinetto et al. 2016b) ECCVW16 AlexNet �
Staple_CA(Mueller et al. 2017) CVPR17 � � � �
ECO_HC (Danelljan et al. 2017) CVPR17 � � �
ECO (Danelljan et al. 2017) CVPR17 VGG-M � �
CFNet (Valmadre et al. 2017) CVPR17 AlexNet � �
CSRDCF (Lukezic et al. 2017) CVPR17 � � � � �
PTAV (Fan and Ling 2017) ICCV17 � � VGG-16 � �
DSiam (Guo et al. 2017) ICCV17 AlexNet �
BACF (Galoogahi et al. 2017) ICCV17 � � �
fDSST (Danelljan et al. 2017) PAMI17 � � � �
VITAL (Song et al. 2018) CVPR18 VGG-M � �
TRACA (Choi et al. 2018) CVPR18 VGG-M � �
STRCF (Li et al. 2018) CVPR18 � � �
D-STRCF (Li et al. 2018) CVPR18 VGG-M � �
StructSiam (Zhang et al. 2018) ECCV18 AlexNet �
DaSiamRPN (Zhu et al. 2018) ECCV18 Res-50 � �
SiamRPN++ (Li et al. 2019) CVPR19 Res-50 �
SiamDW (Zhang and Peng 2019) CVPR19 Res-22 �
SiamMask (Wang et al. 2019) CVPR19 Res-50 �
ASRCF (Dai et al. 2019) CVPR19 � VGG-16 � �
ATOM (Danelljan et al. 2019) CVPR19 Res-18 � �
C-RPN (Fan and Ling 2019) CVPR19 AlexNet �
GFSDCF (Xu et al. 2019) ICCV19 Res-50 � �
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Table 5 continued

Representation Search

PCA Sparse Color Pixel HoG H or B Deep Update PF RS DS

DiMP (Bhat et al. 2019) ICCV19 Res-50 � �
SPLT (Yan et al. 2019) ICCV19 Res-50 � �
GlobalTrack (Huang et al. 2020) AAAI20 Res-50 �
LTMU (Dai et al. 2020) CVPR20 Res-50 � �

Search: PF Particle filter, RS Random sampling, DS Dense sampling

Fig. 8 Overall evaluation results on LaSOT under the full overlap protocol. Best viewed in color

The resulted normalized precision (N-PRE) can ensure the
consistency of evaluation across different target scales. The
success rate (SUC) is computed as the ratio of the number
of successfully tracked frames (i.e., intersection-over-union
(IoU) between groundtruth bounding box and tracking result
larger than a pre-defined threshold, typically, 0.5) to the num-
ber of all frames in a sequence.

4.2 Evaluated Tracking Algorithms

In order to provide baselines for future comparison on
LaSOT, we extensively evaluate 48 algorithms. In specific,
these 48 approaches consist of deep trackers (e.g., MDNet
Nam and Han (2016), TRACA Choi et al. (2018), CFNet
Valmadre et al. (2017), SiamFC Bertinetto et al. (2016b),
StructSiam Zhang et al. (2018), DSiam Guo et al. (2017),
SINT Tao et al. (2016), ATOMDanelljan et al. (2019), DiMP
Bhat et al. (2019), VITAL Song et al. (2018), SiamRPN++
Li et al. (2019), DaSiamRPN Zhu et al. (2018),
SiamDW Zhang and Peng (2019), C-RPN Fan and Ling
(2019) and SiamMask Wang et al. (2019), GlobalTrack
Huang et al. (2020)), correlation trackers with hand-crafted
features (e.g., ECO_HC Danelljan et al. (2017), DSST
Danelljan et al. (2014), CN Danelljan et al. (2014), CSK
Henriques et al. (2012), KCFHenriques et al. (2015), fDSST
Danelljan et al. (2017), SAMFLi andZhu (2014), SCT4Choi
et al. (2016), STC Zhang et al. (2014) and Staple Bertinetto
et al. (2016a)) or deep features (e.g., HCFTMa et al. (2015),
D-STRCF Li et al. (2018), ECO Danelljan et al. (2017),
GFSDCFXu et al. (2019), ASRCFDai et al. (2019)) and reg-

ularization techniques (e.g., SRDCF Danelljan et al. (2015),
STRCF Li et al. (2018), BACF Galoogahi et al. (2017), Sta-
ple_CA Mueller et al. (2017) and CSRDCF Lukezic et al.
(2017)), ensemble trackers (e.g., SPLT Yan et al. (2019),
LTMU Dai et al. (2020), PTAV Fan and Ling (2017), LCT
Ma et al. (2015), MEEM Zhang et al. (2014) and TLD Kalal
et al. (2012)), sparse trackers (e.g., L1APG Bao et al. (2012)
and ASLA Jia et al. (2012)), other representatives (e.g., CT
Zhang et al. (2012), IVT Ross et al. (2008), MIL Babenko
et al. (2009) and Struck Hare et al. (2011)). In evaluation,
each tracker is used as it is, without anymodification. Table 5
summarizes these trackers with their representation schemes
and search strategies in a chronological order.

Note that in our evaluation, each tracker is tested as it is
in the original paper, for three reasons. First, each tracker
may require different training strategy. As a consequence,
it is difficult to optimally train all trackers to obtain the
best performance. Moreover, inappropriate training settings
may result in performance drop for certain trackers. Sec-
ond, despite using different training data, most deep trackers,
especially recently proposed ones, have been fully trained on
multiple large scale benchmarks. It is reasonable to assume
that each tracker has attained optimal or decent performance
in the originally published paper. Third, for trackers that
only employ pre-trained classification backbone for feature
extraction, it is hard to fine-tune the feature backbone net-
work using existing tracking benchmarks.
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Success plots of OPE - Aspect Ration Change (249)
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Success plots of OPE - Background Clutter (100)
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Success plots of OPE - Camera Motion (86)
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Success plots of OPE - Deformation (142)
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Success plots of OPE - Fast Motion (53)
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Success plots of OPE - Full Occlusion (118)
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Success plots of OPE - Illumination Variation (47)
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Success plots of OPE - Low Resolution (141)
[0.491] DiMP
[0.483] LTMU
[0.452] GlobalTrack
[0.445] ATOM
[0.436] DaSiamRPN
[0.385] SiamRPN++
[0.358] SPLT
[0.357] SiamMask
[0.355] C-RPN
[0.317] MDNet
[0.309] VITAL
[0.299] GFSDCF
[0.283] ASRCF
[0.277] D-STRCF
[0.267] ECO
[0.264] SiamDW
[0.258] StructSiam
[0.257] DSiam
[0.252] SiamFC
[0.246] SINT
[0.245] STRCF
[0.236] ECO_HC
[0.198] PTAV
[0.195] BACF

[0.195] CFNet
[0.194] MEEM
[0.187] SRDCF
[0.185] HCFT
[0.184] TRACA
[0.180] TLD
[0.177] CSRDCF
[0.173] Staple
[0.170] SAMF
[0.170] LCT
[0.165] Staple_CA
[0.158] Struck
[0.147] fDSST
[0.143] DSST
[0.143] SCT4
[0.137] ASLA
[0.126] KCF
[0.117] CN
[0.111] L1APG
[0.109] CT
[0.095] STC
[0.095] CSK
[0.084] MIL
[0.069] IVT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

 r
at

e

Success plots of OPE - Motion Blur (89)
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Success plots of OPE - Out-of-View (104)
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Success plots of OPE - Partial Occlusion (187)
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Success plots of OPE - Rotation (175)
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Success plots of OPE - Scale Variation (273)
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Success plots of OPE - Viewpoint Change (33)
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[0.286] SiamFC
[0.283] STRCF
[0.267] SiamDW
[0.254] BACF
[0.248] CFNet
[0.247] SINT
[0.246] StructSiam

[0.238] CSRDCF
[0.226] Staple
[0.225] SRDCF
[0.208] TRACA
[0.203] PTAV
[0.194] MEEM
[0.193] Staple_CA
[0.178] SAMF
[0.177] HCFT
[0.176] DSST
[0.172] TLD
[0.167] LCT
[0.160] ASLA
[0.158] Struck
[0.137] L1APG
[0.136] fDSST
[0.119] CT
[0.112] CN
[0.102] STC
[0.101] SCT4
[0.100] CSK
[0.100] MIL
[0.095] IVT
[0.093] KCF

Fig. 9 Performance of trackers on each attribute using success under full overlap protocol. Best viewed in color
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ATOM C-RPN DaSiamRPN DiMP GlobalTrack SiamMask GTSiamRPN++ LTMU

Fig. 10 Qualitative evaluation in six typically hard challenges in testing
sequences of full overlap protocol (from top to bottom): yoyo-7 with
fast motion, goldfish-7 with full occlusion, pool-3 with low resolution,

basketball-11 with out-of-view, train-1 with aspect ration change and
person-5 with background clutter. Best viewed in color

4.3 Evaluation with Full Overlap Protocol

4.3.1 Overall Performance

Figure 8 reports the evaluation results under full overlap pro-
tocol in OPE using precision (PRE), normalized precision
(N-PRE) and success rate (SUC). DiMP achieves the best
performance with PRE score of 0.563, N-PRE score of 0.642
and SUC score of 0.560. DiMP consists of two components
including for target localization and scale estimation, both
trained on a large set of videos. In addition, the target local-
ization part is online updated during tracking. LTMU shows
the second best performance with a 0.535 PRE score, 0.621
N-PRE score and 0.539 SUC score. LTMU focuses on long-
term tracking by combining different components such as
local tracker and detector. DaSiamRPN obtains the third best
results with a 0.529 PRE score, 0.605N-PRE score and 0.515
SUC score. This method is developed based on SiamRPN++
but utilizesmore training datawith augmentation techniques.
Besides, a re-detection strategy and online model update

are adopted for robust long-term tracking. Therefore, DaSi-
amRPN performs better than its baseline SiamRPN++ with
a 0.493 PRE score, 0.57 N-PRE score and 0.495 SUC score.
GlobalTrack introduces a two-stage framework for long-
term tracking and demonstrates competitive results with a
0.528 PRE score, 0.597 N-PRE score and 0.517 SUC score.
ATOM obtains promising results with a 0.497 PRE score,
0.57 N-PRE score and 0.499 SUC score. ATOM introduces
an specific network to deal with scale variation. In addition,
it employs complex method for optimization and accelera-
tion to achieve real time speed. SiamFC tracker, which learns
offline a matching function for tracking, achieves competi-
tive results with a 0.339 PRE score, 0.42 N-PRE score and
0.336 SUC score. It is worth noticing that, unlike the perfor-
mance on small benchmarks (e.g., OTB-15Wu et al. (2015)),
SiamFC performs better than many more complicated algo-
rithms such as StructSiam, DSiam, PTAV, and HCFT. A
possible reason is that these complicated methods are more
prone to overfit to small datasets, or they require more hyper-
parameter tuning to obtain better performance. By contrast,

123



International Journal of Computer Vision

the simple SiamFC has better generalization ability in more
challenging and diverse scenarios.

An important observation is that, all top 18 trackers
leverage deep features for tracking, which demonstrates the
advantages of deep representation in achieving robust track-
ing performance. Moreover, we observe that model update is
beneficial for achieving robust tracking, reflected by superior
performance of trackers with online update (e.g., DiMP and
LTMU) than those without model update (e.g., GlobalTrack,
SiamRPN++ and SiamMask).

4.3.2 Attribute-based Performance

In order to further analyze the performance of different track-
ers, we conduct attribute-based evaluation.

Figure 9 shows the attribute-based evaluation results of 48
tracking algorithms with SUC scores under the full overlap
protocol. From Fig. 9, we observe DiMP achieves the best
performance under 13 out of 14 attributes. LTMU obtains the
second best results under 11 out of 14 attributes. It is worth
noting that although the three trackers LTMU, GlobalTrack,
and DaSiamRPN utilize additional re-detection strategy for
long-term tracking, DiMP still outperforms them under the
challenge of occlusion. There are two potential reasons:
First, DiMP uses a relatively larger search region for tar-
get localization. This way, DiMP can re-locate the target
when it reappears. Second, DiMP adopts a more discrim-
inative approach to update the appearance model. Thus, it
shows more robust performance when the target re-appears.
An interesting observation on out-of-view is that Global-
Track and LTMU outperform DiMP, which suggests that
the full image search strategy is beneficial to handle out-of-
view. ATOMobtains promising performance on all attributes
owing to the effectiveness of scale estimation networks. In
addition, other trackers such as SiamRPN++ and SiamMask
achieve competitive results on these 14 attributes. We note
that all the top seven trackers, includingDiMP, LTMU,Glob-
alTrack, DaSiamRPN, ATOM, SiamRPN++ and SiamMask,
employ deeper feature representation (e.g., ResNet-18 or
ResNet-50 He et al. 2016) for appearance modeling, which
shows the importance of powerful features for visual track-
ing.

4.3.3 Qualitative Evaluation

To qualitatively analyze different trackers and provide guid-
ance for future research, we show sampled tracking results
of eight top performers, including DiMP, LTMU, Global-
Track, DaSiamRPN, ATOM, SiamRPN++, SiamMask and
C-RPN, under challenges such as fast motion, full occlusion,
low resolution, out-of-view, aspect ratio change and back-
ground clutter in Fig. 10.

From Fig. 10, we observe that, for sequence yoyo-7 with
fast motion, trackers are prone to lose the target becausemost
current algorithms perform target localization from a rela-
tively small region. Although DiMP, LTMU, GlobalTrack,
and DaSiamRPN utilize a large search region or adopt re-
detection strategies, they still fail as fast motion easily causes
motion blur, which significantly affects re-localization per-
formance of these four trackers. A possible solution to handle
this issue is to combine rich temporal and motion cues with
appearance information for tracking. In video goldfish-7 with
full occlusion, trackers drift to the background region. In
order to deal with occlusion, an additional detection com-
ponent is required to improve performance. All tracking
algorithms fail on the video pool-3 because of the ineffec-
tive representation for small target objects. To deal with this,
one feasible strategy for deep trackers is to combine multi-
scale features from various layers to incorporate details into
representation. Video basketball-11 is difficult due to the
out-of-view challenge. Similar to the solution for handling
occlusion, one can leverage an extra instance-level detector
to re-locate the target object.Aspect ratio change is challeng-
ing in train-1 as most existing trackers often adopt a simple
method (e.g., random search or pyramid strategy) to dealwith
it. A few algorithms such as ATOM and SiamRPN++ borrow
techniques from detection for tracking and show promis-
ing results. However, since targets may also have rotation
at the same time, these trackers cannot accurately localize
the objects. To effectively estimate target scale, a solution is
to take rotation factor into consideration. For video person-
5 with heavy background clutter, all trackers drift due to
less discriminative representation for target and background.
A possible solution to alleviate this issue is to utilize the
contextual information to enhance the discriminability or
fine-grained feature presentation to improve target recogni-
tion ability.

4.4 Evaluation with One-Shot Protocol

4.4.1 Overall Performance

Different from full overlap protocol, videos for evaluation in
the one-shot protocol are from unseen categories. In LaSOT,
150 sequences (about 380K frames) from 15 classes are used
for performance assessment, and none of the 15 classes is
included in the training set or in ImageNet. Figure 11 demon-
strates the evaluation results of all algorithms in OPE setting.
From Fig. 11, LTMU obtains the best results with a 0.473
PRE score, 0.499 N-PRE score and 0.414 SUC score. DiMP
exhibits the second best performancewith a 0.451 PRE score,
0.476 N-PRE score and 0.392 SUC score. ATOM achieves
the third best results with PRE score of 0.43, N-PRE score of
0.459 and SUC score of 0.376.DiMPperformsmore robustly
than ATOM because it exploits more background informa-
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Fig. 11 Overall evaluation results on LaSOT under one-shot protocol. Best viewed in color

tion to improve discriminability. We also notice that, in
this protocol, ATOM shows better results than DaSiamRPN
with a 0.42 PRE score, 0.443 N-PRE score and 0.356 SUC
score. This is may be due to their different model update
strategies. GlobalTrack obtains promising performance with
0.411 PRE score, 0.436 N-PRE score and 0.356 SUC score.
For targets from unseen categories, compared to linear tem-
plate update, supervised online learning can better adapt to
appearance changes during tracking, leading to more robust
performance. Note that, despite the risk of drifting, online
learning trackers usually select reliable tracking results based
on their confidences for update. This way, the drift problem
can be alleviated to some extent during updating. Simi-
lar results have shown that trackers using deeper features
such as LTMU, DiMP, ATOM, DaSiamRPN, GlobalTrack,
SiamRPN++ and SiamMask achieve better results.

4.4.2 Attribute-based Performance

Figure 12 demonstrates the attribute-based evaluation results
of 45 trackers.Weobserve thatDiMPachieves the best results
on 10 out of 14 attributes. DiMP shows the best performance
on 3 attributes and the second best results on 8 attributes,
demonstrating slightly better performance thanGlobalTrack,
ATOM and DaSiamRPN. A surprising finding is that despite
better overall results of DiMP, GlobalTrack outperforms it on
the challenge of out-of-view, thanks to the global search strat-
egy. In addition, an interesting observation is that, SiamMask,
which integrates segmentation into tracking for improve-
ment, does not show better performance than DaSiamRPN
and SiamRPN++. We conjecture that it is caused by the lack
ofmask annotation for trainingSiamMaskonour benchmark.

4.4.3 Qualitative Evaluation

We show qualitative results of eight trackers, including
LTMU, DiMP, ATOM, DaSiamRPN, GlobalTrack, Siam
RPN++, SiamMask and GFSDCT, in six representative chal-
lenges such as fast motion, full occlusion, low resolution,
rotation, background and scale variation in Fig. 13. For

videos with fast motion and full occlusion (e.g., badminton-1
and cosplay-8), trackers easily drift because they usually uti-
lize a relatively small search for target localization.A solution
is to enlarge the search region accordingly or even perform
tracking on the full image. For sequenceswith low-resolution
and rotation (e.g., frisbee-2 and jianzi-4), the tracking algo-
rithms may lose the target because of ineffective feature
extraction for target appearance. A feasible method to handle
this issue is tomine formotion features in videos.Whenback-
ground clutter happenswithmany distractors (e.g.,misc-10),
it is hard for trackers to locate the target. To solve this issue,
one can exploit more spatial details of target to improve dis-
criminative ability of tracking models. In addition, trackers
are prone to drift when heavy scale variation occurs with
other challenges such as aspect ratio change (e.g., paddle-6).
One can leverage techniques such as instance segmentation
to improve scale estimation.

4.5 Retraining on LaSOT

In order to show the advantages of large-scale training set, we
retrain two representative trackers SiamFC Bertinetto et al.
(2016b) and CFNet Valmadre et al. (2017) using sequences
from LaSOT instead of VID for video object detection.
Notice that all training settings are kept the same as those
for training on VID. After re-training, we compare the per-
formance of these two trackers on different benchmarks
including OTB-13, OTB-15, and LaSOTtst in both protocols.

Table 6 demonstrates the results of retraining using our
dedicated benchmark and comparisons with the performance
of the original SiamFC and CFNet trained on ImageNet VID
Russakovsky et al. (2015). We observe that for both track-
ers, the performance is improved. Specifically on OTB-13,
the SUC score of SiamFC is improved from 0.588 to 0.608
using training split in our full overlap protocol. Furthermore,
because of there being more data in the one-shot protocol,
the SUC score is increased to 0.614 with significant gains of
2.6%. On OTB-15, the SUC score of SiamFC is improved
from 0.565 to 0.582 and 0.589 with training data from two
protocol settings, respectively. Similarly, the SUC score of
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Success plots of OPE - Aspect Ration Change (129)

[0.381] LTMU
[0.354] DiMP
[0.341] ATOM
[0.324] GlobalTrack
[0.319] DaSiamRPN
[0.297] SiamRPN++
[0.287] SiamMask
[0.238] GFSDCF
[0.236] SPLT
[0.232] MDNet
[0.231] C-RPN
[0.220] VITAL
[0.204] D-STRCF
[0.196] SiamDW
[0.186] SiamFC
[0.178] SINT
[0.177] ASRCF
[0.173] DSiam
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[0.166] StructSiam
[0.162] PTAV
[0.156] MEEM
[0.150] STRCF
[0.142] CFNet
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[0.087] DSST
[0.080] CN
[0.075] CT
[0.070] MIL
[0.069] CSK
[0.067] L1APG
[0.062] STC
[0.050] IVT
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Success plots of OPE - Background Clutter (68)
[0.348] LTMU
[0.344] DiMP
[0.310] ATOM
[0.292] DaSiamRPN
[0.276] SiamRPN++
[0.263] SiamMask
[0.257] GlobalTrack
[0.252] GFSDCF
[0.243] D-STRCF
[0.231] VITAL
[0.225] C-RPN
[0.222] MDNet
[0.215] SiamDW
[0.206] ECO
[0.202] SPLT
[0.200] ASRCF
[0.195] MEEM
[0.195] SiamFC
[0.189] PTAV
[0.183] StructSiam
[0.181] STRCF
[0.179] SINT
[0.172] DSiam
[0.172] ECO_HC

[0.160] SRDCF
[0.155] BACF
[0.151] CSRDCF
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[0.147] CFNet
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[0.143] Staple_CA
[0.141] LCT
[0.136] TRACA
[0.135] DSST
[0.135] SAMF
[0.135] Struck
[0.133] SCT4
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[0.128] ASLA
[0.123] CN
[0.123] KCF
[0.113] CT
[0.106] CSK
[0.101] MIL
[0.101] L1APG
[0.089] STC
[0.077] IVT
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Success plots of OPE - Camera Motion (18)
[0.612] LTMU
[0.490] ATOM
[0.448] DaSiamRPN
[0.426] DiMP
[0.408] GlobalTrack
[0.395] SPLT
[0.385] SiamMask
[0.378] SiamRPN++
[0.366] GFSDCF
[0.350] C-RPN
[0.315] MDNet
[0.311] D-STRCF
[0.276] ECO
[0.273] VITAL
[0.265] ASRCF
[0.257] STRCF
[0.246] SiamFC
[0.222] PTAV
[0.218] SRDCF
[0.215] StructSiam
[0.212] DSiam
[0.207] SINT
[0.196] CFNet
[0.189] TRACA

[0.188] ECO_HC
[0.185] CSRDCF
[0.169] SiamDW
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Success plots of OPE - Deformation (43)
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Success plots of OPE - Fast Motion (88)
[0.285] LTMU
[0.242] DiMP
[0.235] GlobalTrack
[0.226] ATOM
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Success plots of OPE - Full Occlusion (94)
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Success plots of OPE - Illumination Variation (14)
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Success plots of OPE - Low Resolution (104)
[0.318] LTMU
[0.296] DiMP
[0.279] ATOM
[0.254] DaSiamRPN
[0.244] GlobalTrack
[0.226] SiamRPN++
[0.213] SiamMask
[0.198] GFSDCF
[0.175] MDNet
[0.170] D-STRCF
[0.166] C-RPN
[0.166] SPLT
[0.160] VITAL
[0.152] ASRCF
[0.148] ECO
[0.140] SiamFC
[0.139] StructSiam
[0.137] STRCF
[0.135] SiamDW
[0.130] PTAV
[0.129] MEEM
[0.121] SINT
[0.117] DSiam
[0.116] ECO_HC

[0.105] CFNet
[0.102] BACF
[0.099] SRDCF
[0.093] CSRDCF
[0.091] HCFT
[0.086] Staple
[0.086] TLD
[0.085] TRACA
[0.085] SAMF
[0.082] LCT
[0.081] Staple_CA
[0.075] Struck
[0.074] DSST
[0.072] fDSST
[0.071] SCT4
[0.061] ASLA
[0.061] KCF
[0.059] CN
[0.059] L1APG
[0.049] CSK
[0.046] CT
[0.046] STC
[0.041] MIL
[0.036] IVT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

 r
at

e

Success plots of OPE - Motion Blur (67)
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Success plots of OPE - Out-of-View (32)
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Success plots of OPE - Partial Occlusion (98)
[0.390] DiMP
[0.389] LTMU
[0.355] ATOM
[0.348] GlobalTrack
[0.334] DaSiamRPN
[0.324] SiamRPN++
[0.303] SiamMask
[0.266] GFSDCF
[0.263] MDNet
[0.257] C-RPN
[0.241] SPLT
[0.238] VITAL
[0.229] D-STRCF
[0.225] SiamDW
[0.210] SiamFC
[0.203] ASRCF
[0.201] MEEM
[0.200] SINT
[0.199] ECO
[0.196] StructSiam
[0.188] PTAV
[0.188] DSiam
[0.179] STRCF
[0.166] CFNet

[0.162] ECO_HC
[0.152] BACF
[0.149] Staple
[0.148] HCFT
[0.147] Staple_CA
[0.145] SRDCF
[0.139] LCT
[0.136] TRACA
[0.135] CSRDCF
[0.135] Struck
[0.135] SAMF
[0.123] TLD
[0.122] SCT4
[0.122] fDSST
[0.120] KCF
[0.119] ASLA
[0.119] DSST
[0.112] CN
[0.101] CT
[0.096] CSK
[0.091] MIL
[0.086] L1APG
[0.081] STC
[0.066] IVT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

 r
at

e

Success plots of OPE - Rotation (39)
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Success plots of OPE - Scale Variation (141)
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Success plots of OPE - Viewpoint Change (59)
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Fig. 12 Performance of trackers on each attribute using success under one-shot protocol. Best viewed in color
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ATOM LTMU DaSiamRPN DiMP GlobalTrack SiamMask GTSiamRPN++ GFSDCF

Fig. 13 Qualitative evaluation in six difficult challenging videos in the one-shot protocol (from top to bottom): badminton-1 with fast motion,
cosplay-8 with full occlusion, frisbee-2 with low resolution, jianzi-4 with rotation, misc-10 with background clutter and paddle-6 with scale
variation. Best viewed in color

CFNet obtains obvious improvements on both OTB-13 and
OTB-15. More specifically, the SUC score is improved from
0.589 to 0.615 and 0.622 on OTB-13 using training sets in
two protocols, and on OTB-15 the score is increased from
0.568 to 0.593 and 0.598.

In addition, we re-evaluate these two trackers on LaSOT
under two protocols after retraining, as shown in Table 6.
For SiamFC, the SUC scores under two different protocols
are improved from 0.336 to 0.342 and from 0.230 to 0.237,
respectively. For CFNet, the SUC scores are improved from
0.275 to 0.286 and from 0.184 to 0.194, respectively. These
performance gains show the advantages of large-scale train-
ing dataset for improving tracking performance. It is worth
noting that, the improvements on the smaller datasets OTB-
13 and OTB-15 are higher than those on our testing sets. One
possible reason is that our testing sequences are more chal-
lenging with focus on long-term tracking, while the original
trackers are designed for short-term tracking. For better per-

formance, one may need to adjust more hyperparameters or
even design new frameworks.

5 Discussion

5.1 Full Overlap Versus One-shot

By definition, the full overlap protocol allows overlap of
object classes between training and testing sets, while one-
shot protocol does not allow such overlap. Not surprisingly,
the one-shot protocol is more challenging because the track-
ing algorithms need to generalize to objects with unfamiliar
appearance and motion pattern.

By comparing the success score of each tracker on the
one-shot protocol against the full overlap one, we observe an
obvious performancedrop (by0.037–0.18) for all algorithms.
Such degradation clearly suggests that existing trackers do
not fully address the domain gap between different object
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Table 6 Retraining experiments of two trackers SiamFC Bertinetto et al. (2016b) and CFNet Valmadre et al. (2017) on LaSOT

SiamFC Bertinetto et al. (2016b) CFNet Valmadre et al. (2017)

Training set ImageNet VID
Russakovsky
et al. (2015)

LaSOTtra (full
overlap)

LaSOTtra
(one-shot)

ImageNet VID
Russakovsky
et al. (2015)

LaSOTtra (full
overlap)

LaSOTtra
(one-shot)

OTB-13 Wu et al. (2013) 0.588 0.608 (↑0.020) 0.614 (↑0.026) 0.589 0.615 (↑0.026) 0.622 (↑0.033)

OTB-15 Wu et al. (2015) 0.565 0.582 (↑0.017) 0.589 (↑0.024) 0.568 0.593 (↑0.025) 0.598 (↑0.030)

LaSOTtst (full overlap) 0.336 0.342 (↑0.006) – 0.275 0.286 (↑0.011) –

LaSOTtst (one-shot) 0.230 – 0.237 (↑0.007) 0.184 – 0.194 (↑0.010)

categories. To mitigate the performance degradation caused
by such domain gap, a potential future direction is to explore
domain adaption Ganin and Lempitsky (2015) for tracking
by treating each category or even each target as an individ-
ual domain. In addition, by comparing all trackers within
full overlap or one-shot protocols, we see that all top five
trackers (see Figs. 8 and 11) employ deep features for target
appearance representation, which shows that designing more
effective feature representations should be paid attention to in
both scenarios. Considering the dynamic nature of tracking
problems, future research can leverage both spatial appear-
ance information and motion features to improve tracking
for both seen and unseen object categories. Moreover, we
observe that for the top five trackers in each protocol, the
best three update the model during tracking, which suggests
model updating is critical for both protocols.

5.2 Short-term and Long-termTracking Algorithms

One goal of our benchmark is to advance the development
of long-term tracking algorithms. In full overlap evalua-
tion, DiMP achieves the best results and outperforms the
long-term tracker LTMU. We argue that the reasons are two-
fold. First, DiMP utilizes a relatively large search region
for tracking, which effectively handles the problems of full
occlusion and out-of-view. Second, the update method in
DiMP leverages more historic information than LTMU. In
addition, long-term tracker GlobalTrack outperforms ATOM
and SiamRPN++ owing to deeper feature representation and
a better mechanism to locate target objects using the full
image. On the other hand, in one-shot evaluation, LTMU
achieves the best performance with SUC score of 0.414.
Compared to LTMU, DiMP still achieves competitive results
with 0.392 SUC score. The reason that LTMU outperforms
DiMP in the one-shot protocol is because there are many
small targets. As a result, the tracking model may fail due to
ineffective feature extraction and fast target motion. LTMU
employs a global search strategy to re-locate the target when
drift happens, leading to better results. Moreover, we note
that although GlobalTrack adopts full image search meth-

ods, its result with 0.356 is inferior in comparison to DiMP,
which suggests the importance of effective model updating
for robust performance.

Based on the above analysis, we argue that there are sev-
eral directions that can be taken to improve long-term track-
ing. First, a deeper feature representation (e.g., ResNet-50)
can help to effectively distinguish targets from their back-
grounds. Second, a larger search region may be helpful for
occluded and out-of-view targets. Third, although matching
based trackers (e.g., GlobalTrack and SiamRPN++) achieve
promising results in long-term tracking, model updating
is still crucial to obtaining more robust performance (e.g.,
LTMU and DiMP).

5.3 Analysis on Deeper Feature Representation for
Tracking

Feature representation has been one of the most important
components for robust tracking. In this subsection, we con-
duct experiments by comparing different backbones in both
protocols. We choose SiamRPN++ and DiMP for experi-
ments since both approaches provide official implementa-
tions with different backbone architectures. Specifically, we
study SiamRPN++ with AlexNet, ResNet-18 and ResNet-50
andDiMPwith ResNet-18 and ResNet-50. The experimental
results are demonstrated in Table 7.

From Table 7, we can see that on full overlap evalua-
tion, SiamRPN++ with AlexNet achieves a success score of
0.433 and the performance is further improved to 0.472 and
0.495 success scores using deeper architectures ResNet-18
and ResNet-50, respectively. Similarly, DiMP with deeper
architectureResNet-50 shows a better success score of 0.560,
outperforming DiMP with ResNet-18 achieving 0.534 suc-
cess score. Likewise, on one-shot evaluation, SiamRPN++
with deeper ResNet-50 achieves the better performance with
a success score of 0.340 compared to the scores of 0.316
and 0.245 achieved with ResNet-18 and AlexNet. DiMP
with ResNet-50 obtains a higher score of 0.392 than the
score of 0.381 achieved with ResNet-18. The above compar-
ison clearly suggests that feature representation learned by
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Table 7 Comparison experiments of different architectures on two protocols using success score

Architectures Full overlap One-shot

SiamRPN++ AlexNet 0.433 0.245

ResNet-18 0.472 0.316

ResNet-50 0.495 0.340

DiMP ResNet-18 0.534 0.381

ResNet-50 0.560 0.392

deeper networks demonstrates better robustness for tracking
in both full overlap and one-shot protocols. In addition, an
interesting observation is that deeper networks are crucial
when dealing with unseen targets. When changing back-
bones from ResNet-18 to AlexNet, the performance drop
for SiamRPN++ is 0.039 on the full overlap evaluation.
However, on one-shot evaluation, the performance degra-
dation is more obvious with a drop of 0.071 when using
AlexNet, which shows that deeper feature representation is
more important for tracking performance in locating unseen
targets.

5.4 Analysis onModel Update for Tracking

Visual tacking is an ill-posed problem inwhich only informa-
tion from the first frame is reliable. Due to target appearance
variation in video, tracking models usually need an update
strategy to handle appearance variation. However, because of
occlusion and inaccurate intermediate results, model updat-
ing is an extremely complex process. For example, it is
difficult to determine when and how to utilize current infor-
mation for updates. Inappropriate updates may increase the
risk of drifting. To avoid this issue, existing trackers such as
GlobalTrack, SiamRPN++, SiamMask, and C-RPN formu-
late tracking as a matching problem without model updates.
These approaches showpromising performance by achieving
success scores of 0.517, 0.495, 0.467 and 0.455 on full over-
lap evaluation and 0.356, 0.340, 0.332 and 0.275 on one-shot
evaluation. In comparison to these trackers without updates,
methodswithmodel update includingDiMP, LTMU,ATOM,
andDaSiamRPNobtain better success scores of 0.560, 0.539,
0.515 and 0.499 on full overlap evaluation and 0.392, 0.414,
0.376 and 0.356 on one-shot evaluation. In addition, we
observe that the evaluation of most attributes demonstrates
that trackers with model update show better performance.
Through the above comparison and analysis, we argue that
although online learning for model update is not key to
performance improvement, it is essential to perform model
updates to achieve robust tracking. We hope that this analy-
sis can inspire future research for better design of tracking
algorithms.

6 Conclusion

In this paper, we introduced LaSOT, a high-quality large-
scale single-object tracking benchmark containing 1550
videos with more than 3.87million frames. To our knowl-
edge, LaSOT is by far the largest tracking benchmark, in
terms of precisely annotated frames. By releasing LaSOT,
we expect to offer the community a dedicated platform
to develop deep trackers and evaluate long-term tracking
performance. In addition, we provided additional lingual
specification for each sequence, aiming to encourage the
exploration of lingual features to further improve perfor-
mance. Moreover, for flexible performance evaluation we
designed two different experimental settings: the full over-
lap and one-shot protocols. Extensive experiments onLaSOT
by assessing 48 trackers indicate that there is still significant
room for future improvement.
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